DocumentCode :
3392383
Title :
The research of parameters of genetic algorithm and comparison with particle swarm optimization and shuffled frog-leaping algorithm
Author :
Yue, Mei ; Tao Hu ; Hu, Tao ; Guo, Xuan
Author_Institution :
Inst. of Inf. Eng., Shenzhen Univ., Shenzhen, China
Volume :
1
fYear :
2009
fDate :
19-20 Dec. 2009
Firstpage :
77
Lastpage :
80
Abstract :
The paper introduces the principle of genetic algorithm and analyses the selection of parameters of genetic algorithm. By an example, the paper researches the different effect of each parameter. Such as, the size of the population (M), the probability of crossover (Pc) and the probability of mutation (Pm). By the experimentation and simulation, The paper brings forward a general method for selection of parameters for genetic algorithm. In the end, the paper compare the genetic algorithm (GA) with particle swarm optimization (PSO) and shuffled frog-leaping algorithm (SFLA).
Keywords :
genetic algorithms; particle swarm optimisation; genetic algorithm; parameter selection; particle swarm optimization; shuffled frog-leaping algorithm; Biological cells; Evolution (biology); Genetic algorithms; Genetic engineering; Genetic mutations; Intelligent transportation systems; Paper technology; Particle swarm optimization; Power engineering and energy; Probability; crossover; genetic algorithm; mutation; particle swarm optimization; shuffled frog-leaping algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Power Electronics and Intelligent Transportation System (PEITS), 2009 2nd International Conference on
Conference_Location :
Shenzhen
Print_ISBN :
978-1-4244-4544-8
Type :
conf
DOI :
10.1109/PEITS.2009.5406960
Filename :
5406960
Link To Document :
بازگشت