DocumentCode :
3393859
Title :
Bayesian Inference for Dynamic Models with Dirichlet Process Mixtures
Author :
Caron, Francois ; Davy, Manuel ; Doucet, Arnaud ; Duflos, Emmanuel ; Vanheeghe, Philippe
Author_Institution :
Ecole Centrale de Lille, LAGIS, Villeneuve d´´Ascq
fYear :
2006
fDate :
10-13 July 2006
Firstpage :
1
Lastpage :
8
Abstract :
Using Kalman techniques, it is possible to perform optimal estimation in linear Gaussian state-space models. We address here the case where the noise probability density functions are of unknown functional form. A flexible Bayesian nonparametric noise model based on mixture of Dirichlet processes is introduced. Efficient Markov chain Monte Carlo and sequential Monte Carlo methods are then developed to perform optimal estimation in such contexts
Keywords :
Bayes methods; Gaussian noise; Kalman filters; Markov processes; Monte Carlo methods; inference mechanisms; probability; state-space methods; Bayesian inference; Dirichlet process mixtures; Kalman techniques; Markov chain Monte Carlo methods; linear Gaussian state-space models; noise probability density functions; Bayesian methods; Computer science; Context modeling; Deconvolution; Gaussian noise; Monte Carlo methods; Particle filters; Probability density function; State estimation; Statistics; Bayesian nonparametrics; Dirichlet Process Mixture; Monte Carlo Markov Chain; Particle filter; Rao-Blackwellisation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Fusion, 2006 9th International Conference on
Conference_Location :
Florence
Print_ISBN :
1-4244-0953-5
Electronic_ISBN :
0-9721844-6-5
Type :
conf
DOI :
10.1109/ICIF.2006.301580
Filename :
4085866
Link To Document :
بازگشت