DocumentCode :
3395716
Title :
Optimal Scheduling for State Estimation Using a Terminal Cost Function
Author :
Savage, C.O. ; La Scala, B.F. ; Moran, B.
Author_Institution :
Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic.
fYear :
2006
fDate :
10-13 July 2006
Firstpage :
1
Lastpage :
8
Abstract :
In this paper we consider state estimation problems where there are multiple independent processes evolving but the estimation scheme can only select a limited set of processes to measure at each time step. Within a Gauss-Markov framework, we show the optimality of a scheduling scheme under various scenarios. These types of problems are common in sensor scheduling applications
Keywords :
filtering theory; scheduling; state estimation; Gauss-Markov framework; optimal scheduling; sensor scheduling; state estimation; terminal cost function; Cost function; Gaussian processes; Hidden Markov models; Kalman filters; Laboratories; Optimal scheduling; Radar tracking; State estimation; Target tracking; Time measurement; Kalman filter; sensor scheduling; state estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Fusion, 2006 9th International Conference on
Conference_Location :
Florence
Print_ISBN :
1-4244-0953-5
Electronic_ISBN :
0-9721844-6-5
Type :
conf
DOI :
10.1109/ICIF.2006.301677
Filename :
4085963
Link To Document :
بازگشت