DocumentCode :
3397145
Title :
Systolic solution of linear systems over GF(p) with partial pivoting
Author :
Hoche, Bertrand ; Quinton, Patrice ; Robert, Yves
Author_Institution :
CNRS, Laboratoire TIM3, BP 68, 38402 St Martin d´´Hères Cedex, France
fYear :
1987
fDate :
18-21 May 1987
Firstpage :
161
Lastpage :
168
Abstract :
We propose two systolic architectures for the Gaussian triangularization and the Gauss-Jordan diagonalization of large dense nxn matrices over GF(p), where p is a prime number. The solution of large dense linear systems over GF(p) is the major computational step in various algorithms issued from arithmetic number theory and computer algebra. The two proposed architectures implement the elimination with partial pivoting, although the operation of the array remains purely systolic. The last section is devoted to the design and layout of a CMOS 8 by 8 Gauss-Jordan diagonalization systolic chip over GF(2).
Keywords :
Arrays; CMOS integrated circuits; Program processors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Arithmetic (ARITH), 1987 IEEE 8th Symposium on
Conference_Location :
Como, Italy
Print_ISBN :
0-8186-0774-2
Type :
conf
DOI :
10.1109/ARITH.1987.6158700
Filename :
6158700
Link To Document :
بازگشت