DocumentCode :
3399523
Title :
Fuzzy Kalman Filter Based Simultaneous State and Fault Parameter Estimation Scheme with an Application to a Continuous Stirred Tank Reactor
Author :
Janarthanan, K. ; Prakash, J.
Author_Institution :
Dept. of Instrum. Eng., Anna Univ., Chennai
fYear :
2006
fDate :
15-17 Sept. 2006
Firstpage :
1
Lastpage :
3
Abstract :
In this paper a multi-model approach based fault detection and identification has been proposed. Takagi-Sugeno dynamic model has been used in this paper to describe the nonlinear dynamic system using locally linearized linear models. The augmented local linear models function as state and fault parameter estimator and the overall state and fault parameter estimation is a non-linear combination of individual local observer outputs. The proposed FDI scheme is tested via simulation on the CSTR process. The performances of fuzzy Kalman filter and extended Kalman filter have been compared
Keywords :
Kalman filters; continuous systems; fault location; fuzzy control; fuzzy systems; linearisation techniques; nonlinear dynamical systems; state estimation; CSTR process; FDI scheme; Takagi-Sugeno dynamic model; continuous stirred tank reactor; fault detection-identification; fault parameter estimation; fuzzy Kalman filter; linearized linear model; multimodel approach; nonlinear dynamic system; state estimation; Continuous-stirred tank reactor; Fault detection; Fault diagnosis; Fuzzy systems; Nonlinear dynamical systems; Observers; Parameter estimation; State estimation; State-space methods; Stochastic systems; Non-linear State; Parameter Estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
India Conference, 2006 Annual IEEE
Conference_Location :
New Delhi
Print_ISBN :
1-4244-0369-3
Electronic_ISBN :
1-4244-0370-7
Type :
conf
DOI :
10.1109/INDCON.2006.302754
Filename :
4086225
Link To Document :
بازگشت