DocumentCode :
3400853
Title :
Optimality and Saddle Point for Vector Optimization Under Semilocally B-preinvex
Author :
Jiang, Jun ; Xu, Shuli
Author_Institution :
Hubei Province Key Lab. of Syst. Sci. in Metall. Process, Wuhan Univ. of Sci. & Technol., Wuhan, China
Volume :
3
fYear :
2010
fDate :
23-24 Oct. 2010
Firstpage :
382
Lastpage :
386
Abstract :
In this paper, a nonlinear programming problem is considered where the functions involved are η-semi-differentiable. An equivalent η-approximated vector optimization problem is constructed by a modification of the objective and the constraint functions in the original multi-objective programming problem. The connection between (weak) efficient points in the original multi-objective programming problem and its equivalent η-approximated vector optimization is proved. Furthermore, a modified Lagrange function is introduced for a constructed vector optimization problem. By the help of the modified Lagrange function, saddle point results are presented for the original multi-objective programming problem.
Keywords :
approximation theory; function approximation; nonlinear programming; vectors; Lagrange function; approximated vector optimization; constraint function; multiobjective programming; nonlinear programming; saddle point; semidifferentiable function; Approximation methods; Europe; Laboratories; Mathematical analysis; Minimization; Optimization; Programming; ? ? semi-differentiable; b ?preinvex; multi-objective programmin; saddle point;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Artificial Intelligence and Computational Intelligence (AICI), 2010 International Conference on
Conference_Location :
Sanya
Print_ISBN :
978-1-4244-8432-4
Type :
conf
DOI :
10.1109/AICI.2010.317
Filename :
5655640
Link To Document :
بازگشت