DocumentCode :
3402907
Title :
Application of Kernel Principal Components Analysis to pattern recognitions
Author :
Sohara, Kosuke ; Kotani, Manabu
Author_Institution :
Fac. of Eng., Kobe Univ., Japan
Volume :
2
fYear :
2002
fDate :
5-7 Aug. 2002
Firstpage :
750
Abstract :
Kernel Principal Component Analysis (Kernel PCA) is one of the methods to perform PCA in high dimensional space. The purpose of this paper is to examine what components are obtained by Kernel PCA and evaluate effectiveness of the components as feature. Simulation´s results show that Kernel PCA can get superior performance to PCA.
Keywords :
eigenvalues and eigenfunctions; learning automata; pattern recognition; principal component analysis; Kernel PCA; Kernel Principal Component Analysis; Principal Component Analysis; pattern recognitions; support vector machine; Data mining; Eigenvalues and eigenfunctions; Kernel; Pattern analysis; Pattern recognition; Performance analysis; Polynomials; Principal component analysis; Spatial databases; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
SICE 2002. Proceedings of the 41st SICE Annual Conference
Print_ISBN :
0-7803-7631-5
Type :
conf
DOI :
10.1109/SICE.2002.1195250
Filename :
1195250
Link To Document :
بازگشت