DocumentCode :
3405332
Title :
An Algorithm for Mining Frequent Items on Data Stream Using Fading Factor
Author :
Chen, Ling ; Zhang, Shan ; Tu, Li
Author_Institution :
Dept. of Comput. Sci., Yangzhou Univ., Yangzhou, China
Volume :
2
fYear :
2009
fDate :
20-24 July 2009
Firstpage :
172
Lastpage :
177
Abstract :
An algorithm using a fading factor to detect the frequent data items in a stream is presented. Our algorithm can detect epsiv-approximate frequent data items on data stream using O(L+epsiv-1) memory space where L is a constant, and the processing time for each data item is O(1). Experimental results on several artificial datasets and real datasets show our algorithm has higher precision, requires less memory and computation time than other similar methods.
Keywords :
data mining; artificial dataset; data mining frequent item; data stream; fading factor; real dataset; Application software; Computer applications; Computer science; Counting circuits; Data mining; Fading; Frequency; Information science; Sampling methods; Software algorithms; data mining; data stream; frequent items; time fading model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Software and Applications Conference, 2009. COMPSAC '09. 33rd Annual IEEE International
Conference_Location :
Seattle, WA
ISSN :
0730-3157
Print_ISBN :
978-0-7695-3726-9
Type :
conf
DOI :
10.1109/COMPSAC.2009.130
Filename :
5254129
Link To Document :
بازگشت