DocumentCode :
340580
Title :
Retrieving agricultural variables by microwave radiometry using a neural network algorithm trained by a physical model
Author :
Del Frate, Fabio ; Ferrazzoli, P. ; Schiavon, G. ; Wigneron, J.-P. ; Chanzy, A.
Volume :
4
fYear :
1999
fDate :
1999
Firstpage :
2134
Abstract :
A neural network algorithm trained by a physical vegetation model is used to retrieve soil moisture of a wheat crop during the whole crop cycle. The retrieval algorithm uses multifrequency and multiangular microwave radiometric data as inputs. The procedure is tested by using extensive measurements carried out in 1993 at the INRA Avignon test site
Keywords :
agriculture; geophysical signal processing; geophysical techniques; geophysics computing; hydrological techniques; learning (artificial intelligence); neural nets; radiometry; remote sensing; soil; terrain mapping; vegetation mapping; AD 1993; France; INRA Avignon test site; agricultural variables; agriculture; crops; geophysical measurement technique; hydrology; microwave radiometry; multiangle method; multifrequency method; neural net; neural network algorithm; physical model; remote sensing; retrieval algorithm; soil moisture; terrain mapping; trained; training; vegetation mapping; wheat crop; Crops; Electromagnetic scattering; Electronic mail; Frequency; Microwave radiometry; Neural networks; Soil measurements; Soil moisture; Testing; Vegetation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 1999. IGARSS '99 Proceedings. IEEE 1999 International
Conference_Location :
Hamburg
Print_ISBN :
0-7803-5207-6
Type :
conf
DOI :
10.1109/IGARSS.1999.775054
Filename :
775054
Link To Document :
بازگشت