DocumentCode
340650
Title
Improved radiation hardness for Si detectors: application of low resistivity starting material and/or manipulation of Neff by selective filling of radiation-induced traps at low temperatures
Author
Dezillie, B. ; Li, Z. ; Eremin, V. ; Bruzzi, M. ; Pirollo, S. ; Pandey, S.U. ; Li, C.J.
Author_Institution
Brookhaven Nat. Lab., Upton, NY, USA
Volume
1
fYear
1998
fDate
1998
Firstpage
284
Abstract
Radiation-induced electrical changes in both the space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Φ inv) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds kΩcm at high fluences, independent of the initial resistivity and material type. However, the fluence (Φs), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Φ s is in the same order of that of Φinv for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (Neff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data
Keywords
electrical resistivity; neutron effects; radiation hardening (electronics); resistors; semiconductor diodes; silicon radiation detectors; space charge; Neff; Si; Si detectors; bulk material; depletion voltage; diodes; doping concentration; low temperature; neutron fluence; radiation hardness; radiation-induced traps; resistivity; resistors; space charge concentration; space charge region; space charge sign inversion fluence; Conductivity; Diodes; Doping; Filling; Neutrons; Radiation detectors; Resistors; Silicon radiation detectors; Space charge; Thyristors;
fLanguage
English
Publisher
ieee
Conference_Titel
Nuclear Science Symposium, 1998. Conference Record. 1998 IEEE
Conference_Location
Toronto, Ont.
ISSN
1082-3654
Print_ISBN
0-7803-5021-9
Type
conf
DOI
10.1109/NSSMIC.1998.775146
Filename
775146
Link To Document