• DocumentCode
    3407733
  • Title

    Multidimensional wiener filtering using fourth order statistics of hyperspectral images

  • Author

    Letexier, Damien ; Bourennane, Salah

  • Author_Institution
    Inst. Fresnel, Marseille
  • fYear
    2008
  • fDate
    March 31 2008-April 4 2008
  • Firstpage
    917
  • Lastpage
    920
  • Abstract
    In this paper we propose a new multidimensional filtering method based on fourth order cumulants to denoise of data tensor impaired by correlated Gaussian noise. We overview the multidimensional Wiener filtering that overcomes the well known lower rank-(K1,..., KN) tensor approximation. But this method only exploits second order statistics. In some applications, it may be interesting to consider a correlated Gaussian noise. Then, we propose to introduce the fourth order statistics in the denoising algorithm. Indeed, the use of fourth order cumulants enables to remove the Gaussian components of an additive noise. Qualitative results of the improved multidimensional Wiener filtering are shown for the case of noise reduction in hyperspectral imagery.
  • Keywords
    AWGN; Wiener filters; approximation theory; higher order statistics; image denoising; tensors; Gaussian components; additive noise; correlated Gaussian noise; data tensor denoising; fourth order cumulants; fourth order statistics; hyperspectral imagery; hyperspectral images; multidimensional Wiener filtering; noise reduction; second order statistics; tensor approximation; Additive noise; Additive white noise; Filtering; Gaussian noise; Hyperspectral imaging; Multidimensional systems; Noise reduction; Statistics; Tensile stress; Wiener filter; cumulants; denoising; tensor; wiener;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on
  • Conference_Location
    Las Vegas, NV
  • ISSN
    1520-6149
  • Print_ISBN
    978-1-4244-1483-3
  • Electronic_ISBN
    1520-6149
  • Type

    conf

  • DOI
    10.1109/ICASSP.2008.4517760
  • Filename
    4517760