Title :
Action classification on product manifolds
Author :
Lui, Yui Man ; Beveridge, J. Ross ; Kirby, Michael
Author_Institution :
Dept. of Comput. Sci., Colorado State Univ., Fort Collins, CO, USA
Abstract :
Videos can be naturally represented as multidimensional arrays known as tensors. However, the geometry of the tensor space is often ignored. In this paper, we argue that the underlying geometry of the tensor space is an important property for action classification. We characterize a tensor as a point on a product manifold and perform classification on this space. First, we factorize a tensor relating to each order using a modified High Order Singular Value Decomposition (HOSVD). We recognize each factorized space as a Grassmann manifold. Consequently, a tensor is mapped to a point on a product manifold and the geodesic distance on a product manifold is computed for tensor classification. We assess the proposed method using two public video databases, namely Cambridge-Gesture gesture and KTH human action data sets. Experimental results reveal that the proposed method performs very well on these data sets. In addition, our method is generic in the sense that no prior training is needed.
Keywords :
human computer interaction; image classification; singular value decomposition; video signal processing; Cambridge-Gesture gesture; Grassmann manifold; KTH human action data sets; action classification; factorized space; geodesic distance; high order singular value decomposition; multidimensional array; product manifold; public video database; tensor classification; tensor space geometry; Algebra; Computer science; Computer vision; Geometry; Humans; Multidimensional systems; Singular value decomposition; Tensile stress; Training data; Videos;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on
Conference_Location :
San Francisco, CA
Print_ISBN :
978-1-4244-6984-0
DOI :
10.1109/CVPR.2010.5540131