DocumentCode :
3415243
Title :
Data association for people tracking using multiple cameras
Author :
Lee, Yeongseon ; Mersereau, Russell
Author_Institution :
Georgia Inst. of Technol., Atlanta, GA
fYear :
2008
fDate :
March 31 2008-April 4 2008
Firstpage :
2585
Lastpage :
2588
Abstract :
In this paper, we present a data association algorithm for people tracking in a 3D world using multiple cameras. Our approach expands an independent partitioned particle filter with a data association vector. For the association parameter, we propose a proposal function using likelihood functions based on color and distance. This proposed algorithm solves the data association problem without dramatically increasing the computational complexity even in the case of trajectories that cross.
Keywords :
cameras; computational complexity; particle filtering (numerical methods); sensor fusion; target tracking; tracking filters; computational complexity; data association algorithm; independent partitioned particle filter; likelihood function; multiple cameras; people tracking; Bayesian methods; Cameras; Computational complexity; Particle filters; Particle measurements; Particle tracking; Partitioning algorithms; Probability; Proposals; Target tracking; IPPF; Particle filter; data association; proposal function; visual tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on
Conference_Location :
Las Vegas, NV
ISSN :
1520-6149
Print_ISBN :
978-1-4244-1483-3
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2008.4518177
Filename :
4518177
Link To Document :
بازگشت