DocumentCode :
3415262
Title :
A regularization LR-algorithm for restoring images on Gaussian noises model
Author :
Liu, Weihao ; Cai, Xuan ; Mei, Lin
Author_Institution :
Third Res. Inst. of Minist. of Public Security, Shanghai, China
fYear :
2012
fDate :
24-26 Aug. 2012
Firstpage :
420
Lastpage :
425
Abstract :
Ordinary Lucy-Richardson (LR) restoration algorithms are used to restore high SNR degraded images including astronomical images and achieve good results. The algorithms are very sensitive to noises and use the assumption-noises observe the Possion distribution. However, there are always Gaussian noises in natural images. In this paper, we propose a regularization LR-algorithm based on the Gaussian noises model. Our algorithm involves two regularization methods. One gives regularization restriction to the residual signal of the restored image. The other gives regularization restriction to the sparse gradient of the restored image, which is different with the conventional gratitude restriction. They can efficiently suppress the amplification of noises and preserve the details of images. Finally, we show the advancement of our algorithm using some experiment data.
Keywords :
Gaussian distribution; Gaussian noise; image denoising; image restoration; Gaussian distribution; Gaussian noise model; astronomical image; gratitude restriction; high SNR degraded image restoration; natural image; noise suppression; ordinary Lucy-Richardson restoration algorithm; regularization LR-algorithm; regularization restriction; residual signal; sparse gradient; Cameras; Clocks; Computational modeling; Image restoration; Lakes; Noise; Gaussian distribution; Lucy-Richardson algorithm; image restoration; regularization; sparse gradient distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Science and Information Processing (CSIP), 2012 International Conference on
Conference_Location :
Xi´an, Shaanxi
Print_ISBN :
978-1-4673-1410-7
Type :
conf
DOI :
10.1109/CSIP.2012.6308883
Filename :
6308883
Link To Document :
بازگشت