Title :
A Recurrent Neural Network Approach to Pulse Radar Detection
Author :
Sailaja, Anangi ; Sahoo, Ajit Kumar ; Panda, Ganapati ; Baghel, Vikas
Author_Institution :
Dept. of Electron. & Commun. Eng., Nat. Inst. of Technol., Rourkela, India
Abstract :
Matched filtering of biphase coded radar signals create unwanted sidelobes which may mask some of the desired information. This paper presents a new approach for pulse compression using recurrent neural network (RNN). The 13-bit and 35-bit barker codes are used as input signal codes to RNN. The pulse radar detection system is simulated using RNN. The results of the simulation are compared with the results obtained from the simulation of pulse radar detection using Multilayer Perceptron (MLP) network. The number of input layer neurons is same as the length of the signal code and three hidden neurons are taken in the present systems. The Simulation results show that RNN yields better signal-to-sidelobe ratio (SSR) and doppler shift performance than neural network (NN) and some traditional algorithms like auto correlation function (ACF) algorithm. It is also observed that RNN based system converges faster as compared to the MLP based system. Hence the proposed RNN provides an efficient means for pulse radar detection.
Keywords :
matched filters; pulse compression; radar detection; radar signal processing; recurrent neural nets; biphase coded radar signals; matched filtering; multilayer perceptron network; pulse compression; pulse radar detection; recurrent neural network approach; Doppler shift; Information filtering; Information filters; Matched filters; Multilayer perceptrons; Neural networks; Neurons; Pulse compression methods; Radar detection; Recurrent neural networks;
Conference_Titel :
India Conference (INDICON), 2009 Annual IEEE
Conference_Location :
Gujarat
Print_ISBN :
978-1-4244-4858-6
Electronic_ISBN :
978-1-4244-4859-3
DOI :
10.1109/INDCON.2009.5409446