DocumentCode :
3415510
Title :
NARX models: optimal parametric approximation of nonparametric estimators
Author :
Ferrari-Trecate, Giancarlo ; De Nicolao, G.
Author_Institution :
Dipt. di Informatica e Sistemistica, Pavia Univ., Italy
Volume :
6
fYear :
2001
fDate :
2001
Firstpage :
4868
Abstract :
Bayesian regression, a nonparametric identification technique with several appealing features, can be applied to the identification of NARX (nonlinear ARX) models. However, its computational complexity scales as O(N3) where N is the data set size. In order to reduce complexity, the challenge is to obtain fixed-order parametric models capable of approximating accurately the nonparametric Bayes estimate avoiding its explicit computation. In this work we derive, optimal finite-dimensional approximations of complexity O(N2) focusing on their use in the parametric identification of NARX models
Keywords :
Bayes methods; autoregressive processes; computational complexity; nonlinear systems; parameter estimation; Bayesian regression; Gaussian processes; NARX models; computational complexity; nonlinear autoregressive exogenous models; nonparametric Bayes estimate; nonparametric estimators; nonparametric identification technique; optimal finite dimensional complexity approximations; optimal parametric approximation; Bayesian methods; Computational complexity; Costs; Gaussian processes; Measurement errors; Neural networks; Nonlinear dynamical systems; Nonlinear systems; Parametric statistics; Random variables;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2001. Proceedings of the 2001
Conference_Location :
Arlington, VA
ISSN :
0743-1619
Print_ISBN :
0-7803-6495-3
Type :
conf
DOI :
10.1109/ACC.2001.945754
Filename :
945754
Link To Document :
بازگشت