Title :
Distinction between types of motivations: Emergent behavior with a neural, model-based reinforcement learning system
Author :
Shirinov, Elshad ; Butz, Martin V.
Author_Institution :
Dept. of Psychol., Univ. of Wurzburg, Wurzburg
fDate :
March 3 2009-April 2 2009
Abstract :
In this paper, we analyze the behavior of a simulated mobile robot, which interacts with an initially unknown maze-environment. The robot is controlled by an interactive system that is based on a model building Time Growing Neural Gas (TGNG) algorithm and a homeostatic motivational system, which activates movement preferences and goals within the emergent model structure for behavioral control. We propose to differentiate two types of drives (if not more), which we call location- and characteristics-based drives. We exemplary implement the two types of drives by ldquohungerrdquo and ldquofearrdquo, respectively. Several possible methods of combination of the two drives are investigated through simulation, identifying the combination that lead to the most suitable emergent behavior, such as emergent ldquowall-followingrdquo and ldquohidingrdquo. Moreover, we investigate performance in an ALife-like scenario, in which the robot interacts with several food-dispensers. It is shown that additional behavioral concepts, such as ldquocuriosityrdquo and ldquoinhibition of returnrdquo, can maximize the survival chances of the organism, who maintains maximal safety and keeps its belly full. In conclusion, we propose that the concept of motivation needs to be further differentiated to realize autonomous, life-like robots that are able to optimally satisfy multiple, competing types of motivations by emergent, innovative behavioral patterns.
Keywords :
learning (artificial intelligence); mobile robots; autonomous life-like robots; behavioral control; homeostatic motivational system; interactive system; neural model-based reinforcement learning system; simulated mobile robot; time growing neural gas algorithm; Analytical models; Biological neural networks; Computer architecture; Hippocampus; Learning; Mobile robots; Navigation; Predictive models; Psychology; Robot control;
Conference_Titel :
Artificial Life, 2009. ALife '09. IEEE Symposium on
Conference_Location :
Nashville, TN
Print_ISBN :
978-1-4244-2763-5
DOI :
10.1109/ALIFE.2009.4937696