DocumentCode :
3417426
Title :
Parameter Estimation of Wiener Model Based on Improved Bacterial Foraging Optimization
Author :
Huang, Weifeng ; Lin, Weixing
Author_Institution :
Fac. of Inf. Sci. & Technol., Ningbo Univ., Ningbo, China
Volume :
1
fYear :
2010
fDate :
23-24 Oct. 2010
Firstpage :
174
Lastpage :
178
Abstract :
Identification of a nonlinear model is a main topic of modern identification. It is presented that a new approach to parameters estimation for one type of nonlinear models (Wiener model) by using improved bacterial foraging optimization (IBFO) algorithm. Firstly, the basic principle of bacterial foraging optimization (BFO) algorithm is introduced, and then proposed an IBFO. Parameters estimation for a Wiener model is exchanged to its optimization using IBFO. Comparing with BFO, IBFO and improved particle swarm optimization (IPSO) in different signal to noise ratio (SNR), a numerical example is presented to illustrate the effectiveness of the proposed methods.
Keywords :
algorithm theory; microorganisms; parameter estimation; particle swarm optimisation; stochastic processes; Wiener model; improved bacterial foraging optimization algorithm; improved particle swarm optimization; nonlinear model identification; parameter estimation; signal to noise ratio; Equations; Mathematical model; Microorganisms; Numerical models; Optimization; Signal to noise ratio; BFO; IBFO; IPSO; Wiener model; identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Artificial Intelligence and Computational Intelligence (AICI), 2010 International Conference on
Conference_Location :
Sanya
Print_ISBN :
978-1-4244-8432-4
Type :
conf
DOI :
10.1109/AICI.2010.43
Filename :
5656638
Link To Document :
بازگشت