DocumentCode :
3417621
Title :
Language grounding model: Connecting utterances and visual attributions
Author :
Zhang, Wei ; Wang, Xiaojie
Author_Institution :
Center for Intell. Sci. & Technol., Beijing Univ. of Posts & Telecommun., Beijing, China
fYear :
2011
fDate :
19-21 Oct. 2011
Firstpage :
409
Lastpage :
415
Abstract :
The job of language grounding is to research the relationship between language and external physical stimuli. In this paper, we build a language grounding model which is an extension of hidden Markov model. In a show-and-tell experiment, we use this model to learn the words meaning and simple bi-gram syntax, and finally generate the natural language description of special 2-D scenes automatically. The experiment results show the validity of our model in words categorization, semantic learning and phrase generation.
Keywords :
hidden Markov models; learning (artificial intelligence); natural language processing; bi-gram syntax; hidden Markov model; language grounding model; natural language description; phrase generation; semantic learning; show-and-tell experiment; utterance; visual attribution; words categorization; words meaning; Grounding; Hidden Markov models; Image color analysis; Semantics; Syntactics; Vectors; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Computational Intelligence (IWACI), 2011 Fourth International Workshop on
Conference_Location :
Wuhan
Print_ISBN :
978-1-61284-374-2
Type :
conf
DOI :
10.1109/IWACI.2011.6160041
Filename :
6160041
Link To Document :
بازگشت