DocumentCode :
3422041
Title :
Fuzzy ontology generation model using fuzzy clustering for learning evaluation
Author :
Yang, Qing ; Chen, Wei ; Wen, Bin
Author_Institution :
Dept. of Comput. Sci., HuaZhong Normal Univ., Wuhan, China
fYear :
2009
fDate :
17-19 Aug. 2009
Firstpage :
682
Lastpage :
685
Abstract :
For expressing the fuzziness and uncertainty of domain knowledge, realizing the semantic retrieval of fuzzy information, this paper produces an extended fuzzy ontology model and proposes a kind of semantic query expansion technology which can implement semantic information query based on the property values and the relationships of fuzzy concepts. The extended fuzzy ontology provides appropriate support for Learning Evaluation. To access the effect of the proposed model, many experiments have been given for the performance evaluation. The results show that this system can improve retrieval accuracy and promote intelligent semantic query.
Keywords :
fuzzy set theory; information retrieval systems; ontologies (artificial intelligence); fuzzy clustering; fuzzy ontology; learning evaluation; semantic query expansion technology; semantic retrieval; Appropriate technology; Computer science; Data mining; Fuzzy logic; Fuzzy reasoning; Fuzzy sets; Information retrieval; Ontologies; Uncertainty; fuzzy clustering; fuzzy ontology; semantic information retrieval;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Granular Computing, 2009, GRC '09. IEEE International Conference on
Conference_Location :
Nanchang
Print_ISBN :
978-1-4244-4830-2
Type :
conf
DOI :
10.1109/GRC.2009.5255035
Filename :
5255035
Link To Document :
بازگشت