Title :
Exemplar-Based Graph Matching for Robust Facial Landmark Localization
Author :
Feng Zhou ; Brandt, Jim ; Zhe Lin
Author_Institution :
Carnegie Mellon Univ., Pittsburgh, PA, USA
Abstract :
Localizing facial landmarks is a fundamental step in facial image analysis. However, the problem is still challenging due to the large variability in pose and appearance, and the existence of occlusions in real-world face images. In this paper, we present exemplar-based graph matching (EGM), a robust framework for facial landmark localization. Compared to conventional algorithms, EGM has three advantages: (1) an affine-invariant shape constraint is learned online from similar exemplars to better adapt to the test face, (2) the optimal landmark configuration can be directly obtained by solving a graph matching problem with the learned shape constraint, (3) the graph matching problem can be optimized efficiently by linear programming. To our best knowledge, this is the first attempt to apply a graph matching technique for facial landmark localization. Experiments on several challenging datasets demonstrate the advantages of EGM over state-of-the-art methods.
Keywords :
face recognition; graph theory; image matching; linear programming; EGM; affine-invariant shape constraint; exemplar-based graph matching problem; facial image analysis; linear programming; robust facial landmark localization; Active shape model; Detectors; Face; Linear programming; Robustness; Shape; Training;
Conference_Titel :
Computer Vision (ICCV), 2013 IEEE International Conference on
Conference_Location :
Sydney, NSW
DOI :
10.1109/ICCV.2013.131