DocumentCode :
3423686
Title :
Modulation classification in MIMO fading channels via expectation maximization with non-data-aided initialization
Author :
Zhechen Zhu ; Nandi, Asoke K.
Author_Institution :
Dept. of Electron. & Comput. Eng., Brunel Univ., Uxbridge, UK
fYear :
2015
fDate :
19-24 April 2015
Firstpage :
3014
Lastpage :
3018
Abstract :
Non-data aided channel estimation is discussed in this paper to enable blind modulation classification in multiple-input multiple-output fading channels. The channel parameters are jointly estimated via expectation maximization under each modulation hypothesis. Instead of pilot symbols, the initialization of the channel matrix is achieved through a combination of fuzzy c-means clustering and maximum likelihood mapping. The estimated channel matrix and noise power enable the blind classification of modulations using a maximum likelihood classifier. Digital modulations are tested in simulation to validate the proposed classifier. The classifier is able to achieve excellent performance when SNR level is above 5 dB.
Keywords :
MIMO communication; channel estimation; expectation-maximisation algorithm; fading channels; fuzzy set theory; modulation; signal classification; MIMO fading channels; SNR level; blind modulation classification; channel matrix; digital modulations; expectation maximization; fuzzy c-means clustering; maximum likelihood classifier; maximum likelihood mapping; modulation hypothesis; multiple-input multiple-output fading channels; noise power; nondata aided channel estimation; nondata-aided initialization; sinal-to-noise ratio; Channel estimation; Mathematical model; Nickel; Quadrature amplitude modulation; Bayesian inference; MIMO; Rayleigh fading; channel estimation; fuzzy clustering; likelihood classifier; modulation classification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on
Conference_Location :
South Brisbane, QLD
Type :
conf
DOI :
10.1109/ICASSP.2015.7178524
Filename :
7178524
Link To Document :
بازگشت