• DocumentCode
    3425005
  • Title

    Fractional order hold tuning using neural networks

  • Author

    Bárcena, R. ; de la Sen, M. ; Garrido, A.J.

  • Author_Institution
    Dept. de Electronica y Telecomunicaciones, Univ. del Pais Vasco, Bilbao, Spain
  • Volume
    5
  • fYear
    2001
  • fDate
    2001
  • Firstpage
    3872
  • Abstract
    A connectionist method for autotuning the free parameter of a Fractional order hold (FROH) in order to improve the stability properties of the resulting discrete-time zeros is proposed. Such a technique employs multilayer perceptrons to approximate the mapping between the sampling period/continuous-time parameters of the plant and the optimal values of the FROH parameter. The neural networks are designed to adapt on-line to changing system structures, parameter values and sampling periods. To achieve this objective, the network weighting coefficients are determined during an off-line training phase. In this training phase, the optimal values of the FROH parameter are obtained by applying the classical generalised root locus procedure. Simulation results are presented to illustrate the properties of the complete regression system
  • Keywords
    intelligent control; multilayer perceptrons; neurocontrollers; poles and zeros; robust control; FROH; connectionist method; discrete-time LQR; discrete-time zeros; intelligent control; multilayer perceptrons; multirate sampling control systems; neural networks; stability properties; time-varying plants; zeros; Control system synthesis; Control systems; Intelligent control; Multilayer perceptrons; Network synthesis; Neural networks; Optimal control; Sampling methods; Stability; Telecommunications;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 2001. Proceedings of the 2001
  • Conference_Location
    Arlington, VA
  • ISSN
    0743-1619
  • Print_ISBN
    0-7803-6495-3
  • Type

    conf

  • DOI
    10.1109/ACC.2001.946244
  • Filename
    946244