Title :
The generalized inverse eigenvalue problem for generalized periodic jacobi matrices
Author :
Chang, Jing ; Li, Zhibin
Author_Institution :
Coll. of Math. & Phys., Dalian Jiaotong Univ., Dalian, China
Abstract :
This paper presents the following inverse eigenvalue problem for generalized periodic Jacobi matrices:=given real numbers λ,μ, nonzero vectors x,y∈Rn and a real matrix B. Find n×n real generalized periodic Jacobi matrices J (ci = kbi,k > 0,i = 1,...,n) such that Jx = λBx, Jy = μBy. The paper discussed the existence and uniqueness of the question´s solution. And the expression of the solution of the problem is given, and some numerical example is provided.
Keywords :
Jacobian matrices; eigenvalues and eigenfunctions; inverse problems; generalized inverse eigenvalue problem; generalized periodic jacobi matrix; question solution; Atomic measurements; Boundary conditions; Educational institutions; Eigenvalues and eigenfunctions; Geometry; Inverse problems; Jacobian matrices; Mass spectroscopy; Mathematics; Physics computing; generalized Periodic Jacobi matrix; generalized eigenvalue; inverse problem;
Conference_Titel :
Computer Design and Applications (ICCDA), 2010 International Conference on
Conference_Location :
Qinhuangdao
Print_ISBN :
978-1-4244-7164-5
Electronic_ISBN :
978-1-4244-7164-5
DOI :
10.1109/ICCDA.2010.5541225