DocumentCode :
3427187
Title :
Modeling the intonation of discourse segments for improved online dialog ACT tagging
Author :
Sridhar, Vivek Kumar Rangarajan ; Narayanan, Shrikanth ; Bangalore, Srinivas
Author_Institution :
Speech Anal. & Interpretation Lab., Univ. of Southern California, Los Angeles, CA
fYear :
2008
fDate :
March 31 2008-April 4 2008
Firstpage :
5033
Lastpage :
5036
Abstract :
Prosody is an important cue for identifying dialog acts. In this paper, we show that modeling the sequence of acoustic- prosodic values as n-gram features with a maximum entropy model for dialog act (DA) tagging can perform better than conventional approaches that use coarse representation of the prosodic contour through acoustic correlates of prosody. We also propose a discriminative framework that exploits preceding context in the form of lexical and prosodic cues from previous discourse segments. Such a scheme facilitates online DA tagging and offers robustness in the decoding process, unlike greedy decoding schemes that can potentially propagate errors. Using only lexical and prosodic cues from 3 previous utterances, we achieve a DA tagging accuracy of 72% compared to the best case scenario with accurate knowledge of previous DA tag, which results in 74% accuracy.
Keywords :
decoding; maximum entropy methods; speech processing; speech recognition; acoustic prosodic value sequence; coarse representation; decoding process; discourse segments; discriminative framework; intonation modeling; lexical cues; maximum entropy model; n-gram features; online dialog act tagging; prosodic contour; prosodic cues; Context modeling; Decoding; Entropy; Hidden Markov models; Laboratories; Robustness; Speech analysis; Speech recognition; Tagging; Viterbi algorithm; dialog act tagging; discourse context; discriminative modeling; maximum entropy model; prosody;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on
Conference_Location :
Las Vegas, NV
ISSN :
1520-6149
Print_ISBN :
978-1-4244-1483-3
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2008.4518789
Filename :
4518789
Link To Document :
بازگشت