Title :
A Unified Video Segmentation Benchmark: Annotation, Metrics and Analysis
Author :
Galasso, Fabio ; Nagaraja, Naveen Shankar ; Jimenez Cardenas, Tatiana ; Brox, Thomas ; Schiele, Bernt
Author_Institution :
Max Planck Inst. for Inf., Saarbrucken, Germany
Abstract :
Video segmentation research is currently limited by the lack of a benchmark dataset that covers the large variety of sub problems appearing in video segmentation and that is large enough to avoid over fitting. Consequently, there is little analysis of video segmentation which generalizes across subtasks, and it is not yet clear which and how video segmentation should leverage the information from the still-frames, as previously studied in image segmentation, alongside video specific information, such as temporal volume, motion and occlusion. In this work we provide such an analysis based on annotations of a large video dataset, where each video is manually segmented by multiple persons. Moreover, we introduce a new volume-based metric that includes the important aspect of temporal consistency, that can deal with segmentation hierarchies, and that reflects the tradeoff between over-segmentation and segmentation accuracy.
Keywords :
image motion analysis; image segmentation; video signal processing; annotations; occlusion; segmentation hierarchies; temporal volume; unified video segmentation benchmark; video dataset annotations; video segmentation analysis; video segmentation research; video specific information; volume-based metric; Benchmark testing; Business process re-engineering; Clustering algorithms; Image segmentation; Measurement; Motion segmentation; Video sequences; Benchmark; Camera motion; Dataset; Hierarchical segmentation; Image segmentation; Metrics; Motion segmentation; Non-rigid motion; Video analysis; Video segmentation;
Conference_Titel :
Computer Vision (ICCV), 2013 IEEE International Conference on
Conference_Location :
Sydney, NSW
DOI :
10.1109/ICCV.2013.438