DocumentCode :
343005
Title :
A learning and estimation problem arising from in situ control and diagnostics of manufacturing processes
Author :
Galarza, Cecilia G. ; Khargonekar, Pramod P.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA
Volume :
2
fYear :
1999
fDate :
2-4 Jun 1999
Firstpage :
854
Abstract :
We analyze the problem of estimating product variables from process measurements in manufacturing systems. In particular, a novel approach for studying the performance of such estimators in terms of their expected performance is introduced. Using ideas from statistical learning theory, we obtain sufficient conditions on the manufacturing process, the estimation algorithm, and the design procedure to guarantee asymptotic convergence of the estimation algorithm to some optimal estimator when the available data goes to infinity
Keywords :
estimation theory; fault diagnosis; manufacturing processes; parameter estimation; production control; statistical analysis; asymptotic convergence; estimation algorithm; fault diagnostics; manufacturing processes; parameter estimation; product variables; production control; statistical learning theory; sufficient conditions; Computer aided manufacturing; Control systems; Electric variables control; Electric variables measurement; Manufacturing processes; Manufacturing systems; Parameter estimation; Process control; Statistical learning; Sufficient conditions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1999. Proceedings of the 1999
Conference_Location :
San Diego, CA
ISSN :
0743-1619
Print_ISBN :
0-7803-4990-3
Type :
conf
DOI :
10.1109/ACC.1999.783161
Filename :
783161
Link To Document :
بازگشت