Title :
A data-driven and probabilistic approach to residual evaluation for fault diagnosis
Author :
Svärd, Carl ; Nyberg, Mattias ; Frisk, Erik ; Krysander, Mattias
Author_Institution :
Department of Electrical Engineering, University of Linköping, SE-58183 Linkoping, Sweden
Abstract :
An important step in fault detection and isolation is residual evaluation where residuals, signals ideally zero in the no-fault case, are evaluated with the aim to detect changes in their behavior caused by faults. Generally, residuals deviate from zero even in the no-fault case and their probability distributions exhibit non-stationary features due to, e.g., modeling errors, measurement noise, and different operating conditions. To handle these issues, this paper proposes a data-driven approach to residual evaluation based on an explicit comparison of the residual distribution estimated on-line and a no-fault distribution, estimated off-line using training data. The comparison is done within the framework of statistical hypothesis testing. With the Generalized Likelihood Ratio test statistic as starting point, a more powerful and computational efficient test statistic is derived by a properly chosen approximation to one of the emerging likelihood maximization problems. The proposed approach is evaluated with measurement data on a residual for diagnosis of the gas-flow system of a Scania truck diesel engine. The proposed test statistic performs well, small faults can for example be reliable detected in cases where regular methods based on constant thresholding fail.
Keywords :
Approximation methods; Convex functions; Maximum likelihood estimation; Noise measurement; Probability distribution; Testing; Uncertainty;
Conference_Titel :
Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on
Conference_Location :
Orlando, FL, USA
Print_ISBN :
978-1-61284-800-6
Electronic_ISBN :
0743-1546
DOI :
10.1109/CDC.2011.6160714