DocumentCode :
3433302
Title :
Fixed point implementation for parameters extraction in a digital predistorter using adaptive algorithms
Author :
Garcia-Hernandez, Martin ; Prieto-Guerrero, Alfonso ; Laguna-Sanchez, Gerardo Abel ; Mendoza-Valencia, Paulino
Author_Institution :
Dept. of Electr. Eng., Autonomous Metropolitan Univ. - Iztapalapa, Iztapalapa, Mexico
fYear :
2012
fDate :
2-5 July 2012
Firstpage :
978
Lastpage :
982
Abstract :
In this paper, the parameters extraction from the Volterra series to analyze the performance of a Digital Predistorter (DPD), for the Power Amplifier (PA) with memory, is introduced in two different ways: (1) different numerical methods for the parameters extraction and (2) the fixed point numerical format implementation for this numerical method. The parameters in the Volterra Model are typically calculated based on the mean square error criteria. In this paper, we present some alternatives to reduce the complexity, number of operations, and a PA linearization time ,with DPD dealing with OFDM signals. The simulation results show that with the Volterra model, both the LMS and the VSS algorithms are faster and more effective to calculate the parameters and mantain their convergence properties for a 32-bits implementation.
Keywords :
OFDM modulation; Volterra series; least mean squares methods; power amplifiers; signal processing; LMS algorithms; OFDM signals; PA linearization time; VSS algorithms; Volterra series model; adaptive algorithms; digital predistorter; fixed point numerical format; mean square error criteria; numerical methods; parameter extraction; power amplifier; Convergence; Kernel; Least squares approximation; Mathematical model; OFDM; Parameter extraction; Predistortion;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Science, Signal Processing and their Applications (ISSPA), 2012 11th International Conference on
Conference_Location :
Montreal, QC
Print_ISBN :
978-1-4673-0381-1
Electronic_ISBN :
978-1-4673-0380-4
Type :
conf
DOI :
10.1109/ISSPA.2012.6310697
Filename :
6310697
Link To Document :
بازگشت