DocumentCode :
3436826
Title :
On Using SIFT Descriptors for Image Parameter Evaluation
Author :
McInerney, Patrick M. ; Banda, Juan M. ; Angryk, Rafal A.
Author_Institution :
Dept. of Comput. Sci., Montana State Univ., Bozeman, MT, USA
fYear :
2013
fDate :
7-10 Dec. 2013
Firstpage :
32
Lastpage :
39
Abstract :
In this work we present a composite method for image parameter evaluation using Scale-Invariant Feature Transform (SIFT) descriptors and bag of words representation applied to pre-selected image parameters, with potential applications to solar data and other domains. As one of the main challenges in computer vision, image parameter evaluation has been approached from supervised and unsupervised perspectives. Taking advantage of the SIFT scale and rotation invariant properties; we propose a combined method that will aid the image parameter selection process when applying SIFT and bag of words on top of pre-selected parameters. We provide a comparison against traditional methods and across several different datasets to validate our method.
Keywords :
computer vision; image classification; image retrieval; transforms; SIFT descriptors; SIFT scale properties; bag-of-word representation; composite method; computer vision; image classification; image parameter evaluation; image parameter selection process; image retrieval; preselected image parameters; rotation invariant properties; scale-invariant feature transform descriptors; solar data; supervised perspective; unsupervised perspective; Biomedical imaging; Computer vision; Data mining; Gain measurement; Image segmentation; Sun; Visualization; Image retrieval; classification; image descriptors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining Workshops (ICDMW), 2013 IEEE 13th International Conference on
Conference_Location :
Dallas, TX
Print_ISBN :
978-1-4799-3143-9
Type :
conf
DOI :
10.1109/ICDMW.2013.123
Filename :
6753900
Link To Document :
بازگشت