DocumentCode :
3437013
Title :
Micro-architectural Enhancements in Distributed Memory CGRAs for LU and QR Factorizations
Author :
Merchant, F. ; Maity, A. ; Mahadurkar, M. ; Vatwani, K. ; Munje, I. ; Krishna, M. ; Nalesh, S. ; Gopalan, N. ; Raha, S. ; Nandy, S.K. ; Narayan, R.
Author_Institution :
CADLab, Indian Inst. of Sci., Bangalore, India
fYear :
2015
fDate :
3-7 Jan. 2015
Firstpage :
153
Lastpage :
158
Abstract :
LU and QR factorizations are the computationally dear part of many applications ranging from large scale simulations (e.g. Computational fluid dynamics) to augmented reality. These factorizations exhibit time complexity of O (n3) and are difficult to accelerate due to presence of bandwidth bound kernels, BLAS-1 or BLAS-2 (level-1 or level-2 Basic Linear Algebra Subprograms) along with compute bound kernels (BLAS-3, level-3 BLAS). On the other hand, Coarse Grained Reconfigurable Architectures (CGRAs) have gained tremendous popularity as accelerators in embedded systems due to their flexibility and ease of use. Provisioning these accelerators in High Performance Computing (HPC) platforms is the research challenge wrestled by the computer scientists. We consider a CGRA environment in which several Compute Elements (CEs) enhanced with Custom Functional Units (CFUs) are interconnected over a Network-on-Chip (NoC). In this paper, we carry out extensive micro-architectural exploration for accelerating core kernels like Matrix Multiplication (MM) (BLAS-3) for LU and QR factorizations. Our 5 different design enhancements lead to the reduction in the latency of BLAS-3 kernels. On a stand-alone CFU, we achieve up to 8x speed-up for MM. A commensurate improvement is observed for MM in a CGRA environment. We achieve better GF LOP S/mm2 compared to recent implementations.
Keywords :
matrix decomposition; memory architecture; network-on-chip; LU factorizations; QR factorizations; augmented reality; coarse grained reconfigurable architectures; computational fluid dynamics; compute bound kernels; core kernels; distributed memory CGRA; high performance computing platforms; matrix multiplication; microarchitectural enhancements; network-on-chip; Acceleration; Bandwidth; Clocks; Computer architecture; Linear algebra; Registers; US Department of Transportation; computation; numerical linear algebra; parallelism; reconfigurable architectures;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
VLSI Design (VLSID), 2015 28th International Conference on
Conference_Location :
Bangalore
ISSN :
1063-9667
Type :
conf
DOI :
10.1109/VLSID.2015.31
Filename :
7031724
Link To Document :
بازگشت