Title :
Efficient distributed access control for big data in clouds
Author :
Min Xiao ; Mingxin Wang ; Xuejiao Liu ; Junmei Sun
Author_Institution :
Coll. of Comput. Sci. & Technol., Chongqing Univ. of Posts & Telecommun., Chongqing, China
fDate :
April 26 2015-May 1 2015
Abstract :
The term big data refers to the massive amounts of digital information, which can be efficiently stored and processed on a cloud computing platform. However, security and privacy issues are magnified by high volume, variety, and velocity of big data. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) is a promising cryptographic primitive for the security of cloud storage system and can bring together data leakage prevention and fine-grained access control. The existing researches on applying CP-ABE to cloud storage system mainly focus on the efficiency of decryption and user revocation, and some special improvements have been done to alleviate the workloads of data owners and users, such as proxy re-encryption and decryption outsourcing. However, the complexity of user revocation is still linearly correlated with the number of ciphertexts and users in the system. Therefore, in a big data environment with mass data and users, user revocation is still a challenge. In this paper, we propose a distributed, scalable and fine-grained access control scheme with efficient decryption and user revocation for the big data in clouds. We also present a new multi-authority CP-ABE scheme for supporting the efficient decryption outsourcing, user revocation and dynamically joining and exiting of attribute authorities. In our scheme, user revocation is only related to revoked user and can achieve both forward security and backward security. The system analysis shows that our scheme is efficient and provably secure in the generic group model.
Keywords :
Big Data; authorisation; cloud computing; cryptography; Big Data; backward security; ciphertext-policy attribute-based encryption; cloud computing; cloud storage system; data leakage prevention; decryption outsourcing; distributed access control; fine-grained access control; forward security; proxy re-encryption; Cryptography; Outsourcing; Servers; CP-ABE; access control; big data; decryption out-sourcing; user revocation;
Conference_Titel :
Computer Communications Workshops (INFOCOM WKSHPS), 2015 IEEE Conference on
Conference_Location :
Hong Kong
DOI :
10.1109/INFCOMW.2015.7179385