DocumentCode :
3439882
Title :
SVD-based computation of zeros of polynomial matrices
Author :
Holzel, Matthew S. ; Bernstein, Dennis S.
Author_Institution :
Dept. of Aerosp. Eng., Univ. of Michigan, Ann Arbor, MI, USA
fYear :
2011
fDate :
12-15 Dec. 2011
Firstpage :
6962
Lastpage :
6966
Abstract :
We present an algorithm for determining the zeros of polynomial matrices of arbitrary order, normal rank, and dimension. Specifically, we use the singular value decomposition to reduce the problem to an eigenvalue problem.
Keywords :
eigenvalues and eigenfunctions; polynomial matrices; singular value decomposition; SVD based computation; arbitrary order; dimension; eigenvalue problem; normal rank; polynomial matrices; singular value decomposition; Educational institutions; Eigenvalues and eigenfunctions; Matrix decomposition; Polynomials; Singular value decomposition; Symmetric matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on
Conference_Location :
Orlando, FL
ISSN :
0743-1546
Print_ISBN :
978-1-61284-800-6
Electronic_ISBN :
0743-1546
Type :
conf
DOI :
10.1109/CDC.2011.6161141
Filename :
6161141
Link To Document :
بازگشت