Title :
Modeling and Clustering Users with Evolving Profiles in Usage Streams
Author :
Zhang, Chongsheng ; Masseglia, Florent ; Zhang, Xiangliang
Author_Institution :
Sch. of Comput. & Inf. Eng., Henan Univ., Kaifeng, China
Abstract :
Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users´ records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such as Web usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploringusers´ behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models.
Keywords :
Internet; data mining; pattern clustering; user modelling; DDS model; EO model; Web usage; data stream mining technology; dynamic data stream model; evolving objects model; evolving profiles; transaction streaming; tuple streaming; usage streams; user clustering; user modeling; user profile creation; user profile deletion; user profile update; user records; Analytical models; Biological system modeling; Computational modeling; Data mining; Data models; Data structures; Navigation; clustering; evolving tuples; usage streams;
Conference_Titel :
Temporal Representation and Reasoning (TIME), 2012 19th International Symposium on
Conference_Location :
Leicester
Print_ISBN :
978-1-4673-2659-9
DOI :
10.1109/TIME.2012.16