DocumentCode :
3441762
Title :
Neural networks for quaternion-valued function approximation
Author :
Arena, P. ; Fortuna, L. ; Occhipinti, L. ; Xibilia, M.G.
Author_Institution :
Dept. Elettrotecnica Elettronica e Sistemistico, Catania Univ., Italy
Volume :
6
fYear :
1994
fDate :
30 May-2 Jun 1994
Firstpage :
307
Abstract :
In the paper a new structure of a Multi-Layer Perceptron, able to deal with quaternion-valued signals, is proposed. A learning algorithm for the proposed Quaternion MLP (QMLP) is also derived. Such a neural network allows one to interpolate functions of a quaternion variable with a smaller number of connections with respect to the corresponding real valued MLP
Keywords :
function approximation; interpolation; learning (artificial intelligence); multilayer perceptrons; QMLP; function approximation; interpolation; learning algorithm; multi-layer perceptron; neural networks; quaternion-valued signals; Algebra; Computational complexity; Feedforward systems; Function approximation; Interpolation; Multilayer perceptrons; Neural networks; Neurons; Physics; Quaternions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 1994. ISCAS '94., 1994 IEEE International Symposium on
Conference_Location :
London
Print_ISBN :
0-7803-1915-X
Type :
conf
DOI :
10.1109/ISCAS.1994.409587
Filename :
409587
Link To Document :
بازگشت