Title :
Prewhitening of background brain activity via autoregressive modeling
Author :
Ghaleb, Lbrahim ; Davila, Carlos E. ; Srebro, Richard
Author_Institution :
Dept. of Electr. Eng., Southern Methodist Univ., Dallas, TX, USA
Abstract :
The detection of steady-state visual evoked potentials (SSVEP) is important in some clinical audiometry and ophthalmology applications. The SSVEPs are usually concealed in the ongoing background electroencephalogram (EEG) generated in the brain. The EEG is highly colored with unknown covariance matrix. In this paper we model the background noise using an autoregressive (AR) model whose parameters are estimated on line, on a block by block basis. The problem of estimating the AR parameters in the presence of the signal and its effect on the bias of the parameter estimates is addressed. We show that in the case of a low level sinusoidal signal, the parameters of the AR model are only slightly perturbed and an accurate estimate of the parameters can be found using the Yule-Walker equations
Keywords :
autoregressive processes; brain models; electroencephalography; matched filters; medical signal processing; signal detection; visual evoked potentials; white noise; EEG; Yule-Walker equations; autoregressive model; autoregressive modeling; background brain activity prewhitening; background electroencephalogram; background noise; bias; brain; clinical audiometry; covariance matrix; low level sinusoidal signal; ophthalmology applications; parameter estimates; steady-state visual evoked potentials; Background noise; Brain modeling; Colored noise; Covariance matrix; Electroencephalography; Equations; Matched filters; Noise measurement; Parameter estimation; Steady-state;
Conference_Titel :
Biomedical Engineering Conference, 1997., Proceedings of the 1997 Sixteenth Southern
Conference_Location :
Biloxi, MS
Print_ISBN :
0-7803-3869-3
DOI :
10.1109/SBEC.1997.583270