DocumentCode :
3445453
Title :
Geographically Weighted Regression using a non-euclidean distance metric with simulation data
Author :
Lu, Binbin ; Charlton, Martin ; Harris, Paul
Author_Institution :
Nat. Centre for Geocomputation, Nat. Univ. of Ireland Maynooth, Maynooth, Ireland
fYear :
2012
fDate :
2-4 Aug. 2012
Firstpage :
1
Lastpage :
4
Abstract :
In this study, we investigate the performance of a non-Euclidean distance metric in calibrating a Geographically Weighted Regression (GWR) model with a simulated data set. Random predictor variable and spatially varying coefficients are generated on a square grid of size 20*20. We respectively apply Manhattan and Euclidean distance metrics for the GWR calibrations. The preliminary findings show that Manhattan distance performs significantly better than the traditional choice for GWR - Euclidean distance. In particular, it outperforms in the accuracy of coefficient estimates.
Keywords :
digital simulation; geographic information systems; geometry; regression analysis; Euclidean distance metrics; GWR calibrations; Manhattan distance metrics; geographically weighted regression model; noneuclidean distance metric; random predictor variable; simulated data set; Bandwidth; Calibration; Data models; Euclidean distance; Geography; Kernel; Geographically Weighted Regression; Manhattan distance; non-Euclidean distance; simulation data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Agro-Geoinformatics (Agro-Geoinformatics), 2012 First International Conference on
Conference_Location :
Shanghai
Print_ISBN :
978-1-4673-2495-3
Electronic_ISBN :
978-1-4673-2494-6
Type :
conf
DOI :
10.1109/Agro-Geoinformatics.2012.6311652
Filename :
6311652
Link To Document :
بازگشت