DocumentCode :
3449516
Title :
Human skill transfer: neural networks as learners and teachers
Author :
Nechyba, Michael C. ; Xu, Yangsheng
Author_Institution :
Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
Volume :
3
fYear :
1995
fDate :
5-9 Aug 1995
Firstpage :
314
Abstract :
Much work in recent years has focused on transferring human skill to robots by abstracting that skill into a machine-understandable, computational model. Such skill models, however, can be used not only for transferring human control strategy to robots, but also for helping less-skilled human operators improve their performance. The authors propose a two-step approach for transferring skill from human expert to human apprentice. An expert´s relevant control strategies or skills are first abstracted into a sensory-based computational model. Afterwards, this trained computational model is used to generate on-line advice for less-skilled operators who need to improve their skill. This advice can take advantage of many different sensor modalities, thereby potentially improving both the quality and speed of learning for the apprentice. Furthermore, this approach allows for the efficient transfer of skill from a single expert to many apprentices, as well as from many experts to a single apprentice. In this paper, the authors first describe a flexible neural-network-based method for modeling human control strategy and provide motivation for its use. The authors then present a case study for teaching control strategy from one person to another in this two-step approach of transferring skill
Keywords :
human factors; intelligent tutoring systems; learning (artificial intelligence); neural nets; flexible neural-network-based method; human apprentice; human control strategy; human expert; human skill transfer; less-skilled human operators; machine-understandable computational model; online advice generation; sensor modalities; sensory-based computational model; skill models; Computational modeling; Concurrent computing; Decision making; Education; Hidden Markov models; Humans; Intelligent robots; Machine intelligence; Multi-layer neural network; Neural networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems 95. 'Human Robot Interaction and Cooperative Robots', Proceedings. 1995 IEEE/RSJ International Conference on
Conference_Location :
Pittsburgh, PA
Print_ISBN :
0-8186-7108-4
Type :
conf
DOI :
10.1109/IROS.1995.525902
Filename :
525902
Link To Document :
بازگشت