DocumentCode :
3449750
Title :
A 5/2n2-lower bound for the rank of n×n-matrix multiplication over arbitrary fields
Author :
Bläser, Markus
Author_Institution :
Inst. fur Inf., Bonn Univ., Germany
fYear :
1999
fDate :
1999
Firstpage :
45
Lastpage :
50
Abstract :
We prove a lower bound of 5/2n2-3n for the rank of n×n-matrix multiplication over an arbitrary field. Similar bounds hold for the rank of the multiplication in noncommutative division algebras and for the multiplication of upper triangular matrices
Keywords :
computational complexity; matrix multiplication; lower bound; matrix multiplication; noncommutative division algebras; upper triangular matrices; Algebra; Character generation; Ear; Gold; Ice; Radio access networks; Tellurium; Upper bound; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 1999. 40th Annual Symposium on
Conference_Location :
New York City, NY
ISSN :
0272-5428
Print_ISBN :
0-7695-0409-4
Type :
conf
DOI :
10.1109/SFFCS.1999.814576
Filename :
814576
Link To Document :
بازگشت