DocumentCode :
3450550
Title :
On the complexity of SAT
Author :
Lipton, Richard J. ; Viglas, Anastasios
Author_Institution :
Dept. of Comput. Sci., Princeton Univ., NJ, USA
fYear :
1999
fDate :
1999
Firstpage :
459
Lastpage :
464
Abstract :
We show that non-deterministic time NTIME(n) is not contained in deterministic time n2-ε and polylogarithmic space, for any ε>0. This implies that (infinitely often), satisfiability cannot be solved in time O(n2-ε) and polylogarithmic space. A similar result is presented for uniform circuits; a log-space uniform circuit of polylogarithmic width computing satisfiability requires infinitely often almost quadratic size
Keywords :
computability; computational complexity; theorem proving; NTIME; SAT complexity; almost quadratic size; deterministic time; log-space uniform circuit; non-deterministic time; polylogarithmic space; polylogarithmic width; satisfiability; uniform circuits; Circuit simulation; Computer science; Microwave integrated circuits; Polynomials; Turing machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 1999. 40th Annual Symposium on
Conference_Location :
New York City, NY
ISSN :
0272-5428
Print_ISBN :
0-7695-0409-4
Type :
conf
DOI :
10.1109/SFFCS.1999.814618
Filename :
814618
Link To Document :
بازگشت