DocumentCode
3456366
Title
A Semi-Definite Programming Embedding Framework for Local Preserving Manifold Learning
Author
Zeng, Xianhua ; Gan, Ling ; Wang, Jian
Author_Institution
Coll. of Comput. Sci. & Technol., Chongqing Univ. of Posts & Telecommun., Chongqing, China
fYear
2010
fDate
21-23 Oct. 2010
Firstpage
1
Lastpage
5
Abstract
A semi-definite programming embedding framework is presented for local preserving manifold learning in this paper. Under the framework, three unstable algorithms (LE, LLE and LTSA) are respectively converted into the stable semi-definite programming embedding algorithms (named as SDPE-LE, SDPE-LLE and SDPE-LTSA). The advantages and effectiveness of these new algorithms are demonstrated via the experimental results on synthetic dataset and real image dataset.
Keywords
learning (artificial intelligence); nonlinear programming; visual databases; local preserving manifold learning; real image dataset; semidefinite programming embedding framework; synthetic dataset; unstable algorithms; Laplace equations; Manifolds; Optimization methods; Programming; Software; Telecommunications;
fLanguage
English
Publisher
ieee
Conference_Titel
Pattern Recognition (CCPR), 2010 Chinese Conference on
Conference_Location
Chongqing
Print_ISBN
978-1-4244-7209-3
Electronic_ISBN
978-1-4244-7210-9
Type
conf
DOI
10.1109/CCPR.2010.5659162
Filename
5659162
Link To Document