DocumentCode :
3459157
Title :
Quantization schemes for low bitrate Compressed Histogram of Gradients descriptors
Author :
Chandrasekhar, Vijay ; Reznik, Yuriy ; Takacs, Gabriel ; Chen, David ; Tsai, Sam ; Grzeszczuk, Radek ; Girod, Bernd
Author_Institution :
Inf. Syst. Lab., Stanford Univ., Stanford, CA, USA
fYear :
2010
fDate :
13-18 June 2010
Firstpage :
33
Lastpage :
40
Abstract :
We study different quantization schemes for the Compressed Histogram of Gradients (CHoG) image feature descriptor. We propose a scheme for compressing distributions called Type Coding, which offers lower complexity and higher compression efficiency compared to tree-based quantization schemes proposed in prior work. We construct optimal Entropy Constrained Vector Quantization (ECVQ) code-books and show that Type Coding comes close to achieving optimal performance. The proposed descriptors are 16× smaller than SIFT and perform on par. We implement the descriptor in a mobile image retrieval system and for a database of 1 million CD, DVD and book covers, we achieve 96% retrieval accuracy using only 4 kilobytes of data per query image.
Keywords :
data compression; gradient methods; image coding; image retrieval; quantisation (signal); tree codes; vector quantisation; ECVQ code book; compressing distributions scheme; entropy constrained vector quantization; gradient image feature descriptor; low bitrate compressed histogram; mobile image retrieval system; tree based quantization scheme; type coding; Bit rate; Books; DVD; Entropy; Histograms; Image coding; Image databases; Image retrieval; Information retrieval; Vector quantization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on
Conference_Location :
San Francisco, CA
ISSN :
2160-7508
Print_ISBN :
978-1-4244-7029-7
Type :
conf
DOI :
10.1109/CVPRW.2010.5543242
Filename :
5543242
Link To Document :
بازگشت