DocumentCode :
3463698
Title :
Solution of Lur´e equations via deflating subspaces
Author :
Reis, T.
Author_Institution :
Inst. fur Numerische Simulation, Tech. Univ. Hamburg-Harburg, Hamburg, Germany
fYear :
2011
fDate :
3-5 March 2011
Firstpage :
1
Lastpage :
4
Abstract :
We consider the so-called Lur´e matrix equations that arise e.g. in linear-quadratic infinite time horizon optimal control. We characterize the set of solutions in terms of deflating subspaces of even matrix pencils. In particular, it is shown that there exist solutions which are extremal in terms of definiteness. It is shown how these special solutions can be constructed deflating subspaces of even matrix pencils.
Keywords :
linear quadratic control; Lur´e matrix equation; linear quadratic infinite time horizon optimal control; matrix pencil; subspace deflation; Density functional theory; Eigenvalues and eigenfunctions; Equations; Linear algebra; Mathematical model; Optimal control; Reduced order systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications, Computing and Control Applications (CCCA), 2011 International Conference on
Conference_Location :
Hammamet
Print_ISBN :
978-1-4244-9795-9
Type :
conf
DOI :
10.1109/CCCA.2011.6031202
Filename :
6031202
Link To Document :
بازگشت