DocumentCode :
3473820
Title :
Machine learning methods for in vivo skin parameter estimation
Author :
Vyas, Sumit ; Banerjee, Adrish ; Burlina, Philippe
Author_Institution :
Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD, USA
fYear :
2013
fDate :
20-22 June 2013
Firstpage :
524
Lastpage :
525
Abstract :
The WHO estimates three million new cases of skin cancer each year. Therefore, there exists a need for prescreening tools that can estimate the biological parameters of human skin, as they can help detect cancers before metastasis. In this paper, we present a novel inverse modeling technique based on Kubelka-Munk theory and machine learning to estimate biological skin parameters from in vivo hyperspec-tral imaging. We use the k-nearest neighbors (k-NN) algorithm in order to estimate skin parameters from their hy-perspectral signatures. We test our methods on 241 hyper-spectral signatures obtained from both genders and three ethnicities, and find encouraging results.
Keywords :
biomedical optical imaging; cancer; hyperspectral imaging; inverse problems; learning (artificial intelligence); medical image processing; parameter estimation; skin; Kubelka-Munk theory; WHO; biological parameter estimation; cancer detection; human skin; hyperspectral signatures; in vivo hyperspectral imaging; in vivo skin parameter estimation; k-nearest neighbors algorithm; machine learning methods; metastasis; novel inverse modeling technique; prescreening tools; skin cancer; Hyperspectral imaging; Mathematical model; Physiology; Skin; Testing; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer-Based Medical Systems (CBMS), 2013 IEEE 26th International Symposium on
Conference_Location :
Porto
Type :
conf
DOI :
10.1109/CBMS.2013.6627860
Filename :
6627860
Link To Document :
بازگشت