DocumentCode :
3475861
Title :
Combining image-level and object-level inference for weakly supervised object recognition. Application to fisheries acoustics
Author :
Lefort, R. ; Fablet, R. ; Karoui, I. ; Boucher, J.-M.
Author_Institution :
STH, Ifremer, Plouzane, France
fYear :
2009
fDate :
7-10 Nov. 2009
Firstpage :
293
Lastpage :
296
Abstract :
This paper addresses weakly supervised object recognition. We show how the combination of an image-level inference, in terms of image-level object class priors, can lead to better training of object recognition models. Stated within a probabilistic setting, the proposed approach is applied to fisheries acoustics and fish school recognition.
Keywords :
aquaculture; inference mechanisms; learning (artificial intelligence); object recognition; probability; fish school recognition; fisheries acoustics; image level inference; object level inference; object recognition model training; weakly supervised object recognition; Acoustic applications; Aquaculture; Biomass; Educational institutions; Image converters; Labeling; Marine animals; Object recognition; Supervised learning; Telecommunications;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2009 16th IEEE International Conference on
Conference_Location :
Cairo
ISSN :
1522-4880
Print_ISBN :
978-1-4244-5653-6
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2009.5413505
Filename :
5413505
Link To Document :
بازگشت