DocumentCode :
347739
Title :
Online identification and control of aerospace vehicles using recurrent networks
Author :
Hu, Zhenning ; Balakrishnan, S.N.
Author_Institution :
Dept. of Mech. & Aerosp. Eng., Missouri Univ., Rolla, MO, USA
Volume :
1
fYear :
1999
fDate :
1999
Firstpage :
225
Abstract :
Methods for estimating the aerospace system parameters and controlling them through two neural networks are presented in this study. We equate the energy function of Hopfield neural network to integral square of errors in the system dynamics and extract the parameters of a system. Parameter convergence is proved. For control, we equate the equilibrium status of a “modified” Hopfield neural network to the steady state Riccati solution with the system parameters as inputs. Through these two networks, we present the online identification and control of an aircraft using its nonlinear dynamics
Keywords :
Hopfield neural nets; Riccati equations; aerospace control; neurocontrollers; nonlinear dynamical systems; recurrent neural nets; Hopfield neural network; aerospace vehicle control; energy function; integral square of errors; neural networks; nonlinear dynamics; online control; online identification; parameter convergence; recurrent networks; steady state Riccati solution; system dynamics; system parameters; Aerodynamics; Aerospace control; Aircraft; Control systems; Hopfield neural networks; Neural networks; Nonlinear dynamical systems; Riccati equations; Steady-state; Vehicle dynamics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Applications, 1999. Proceedings of the 1999 IEEE International Conference on
Conference_Location :
Kohala Coast, HI
Print_ISBN :
0-7803-5446-X
Type :
conf
DOI :
10.1109/CCA.1999.806180
Filename :
806180
Link To Document :
بازگشت