DocumentCode :
3477726
Title :
Sliding mode state filtering and parameter estimation for stochastic linear systems
Author :
Basin, Michael ; Rodriguez-Ramirez, Pablo
Author_Institution :
Dept. of Phys. & Math. Sci., Autonomous Univ. of Nuevo Leon, San Nicolas de los Garza, Mexico
fYear :
2012
fDate :
12-14 Jan. 2012
Firstpage :
262
Lastpage :
267
Abstract :
This paper presents the sliding mode mean-square and mean-module state filtering and parameter identification problems for linear stochastic systems with unknown parameters over linear observations, where unknown parameters are considered Wiener processes. The original problems are reduced to the sliding mode mean-square and mean-module filtering problems for an extended state vector that incorporates parameters as additional states. The obtained sliding mode filters for the extended state vector also serve as the optimal identifiers for the unknown parameters. Performance of the designed sliding mode mean-square and mean-module state filters and parameter identifiers are verified for both, stable and unstable, linear uncertain systems.
Keywords :
filtering theory; linear systems; mean square error methods; parameter estimation; stochastic processes; stochastic systems; uncertain systems; variable structure systems; vectors; Wiener processes; linear observations; linear uncertain systems; mean-module state filtering; parameter estimation; parameter identification problems; parameter identifiers; sliding mode mean-square; sliding mode state filtering; state vector; stochastic linear systems; Equations; Estimation error; Gaussian noise; Linear systems; Mathematical model; Variable structure systems; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Variable Structure Systems (VSS), 2012 12th International Workshop on
Conference_Location :
Mumbai, Maharashtra
ISSN :
2158-3978
Print_ISBN :
978-1-4577-2066-6
Electronic_ISBN :
2158-3978
Type :
conf
DOI :
10.1109/VSS.2012.6163512
Filename :
6163512
Link To Document :
بازگشت