DocumentCode :
3480243
Title :
Map-MRF Super-Resolution Image Reconstruction using Maximum Pseudo-Likelihood parameter estimation
Author :
Martins, Ana L D ; Levada, Alexandre L M ; Homem, Murillo R P ; Mascarenhas, Nelson D A
Author_Institution :
Dept. de Comput., Univ. Fed. de Sao Carlos, Sao Carlos, Brazil
fYear :
2009
fDate :
7-10 Nov. 2009
Firstpage :
1165
Lastpage :
1168
Abstract :
In this paper, we address the parameter estimation of a super-resolution image reconstruction approach following a maximum a posteriori probability (MAP) algorithm. The generalized isotropic multi-level logistic (GIMLL) Markov random field (MRF) model is considered for the high-resolution image characterization. In most applications, MRF model parameters are still chosen by a trial-and-error procedure through simple manual adjustments. In order to overcome this problem we propose a novel approach based on interval parameter estimation using both the maximum pseudo-likelihood (MPL) technique and an approximation of the asymptotic variance of this estimator. To evaluate the capability of the proposed estimator we used a Markov chain Monte Carlo algorithm to generate GIMLL model outcomes. The differences between the real parameters and the proposed MPL estimators are not significant. Moreover, the normalized mean square error (NMSE) of the high-resolution estimations indicate the effectiveness of our approach and the importance of an accurate estimation procedure.
Keywords :
Markov processes; Monte Carlo methods; image reconstruction; image resolution; maximum likelihood estimation; mean square error methods; probability; random processes; GIMLL model; MAP algorithm; MPL estimators; MRF model parameters; Markov chain Monte Carlo algorithm; Markov random field model; asymptotic variance; generalized isotropic multilevel logistic; high-resolution estimations; high-resolution image characterization; maximum a posteriori probability algorithm; maximum pseudo-likelihood parameter estimation; maximum pseudo-likelihood technique; normalized mean square error; super-resolution image reconstruction; trial-and-error procedure; Bayesian methods; Image reconstruction; Image resolution; Layout; Logistics; Markov random fields; Monte Carlo methods; Optical noise; Parameter estimation; Spatial resolution; Markov Random Field; Maximum Pseudo-Likelihood; Maximum a Posteriori Probability; Super-Resolution Image Reconstruction;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2009 16th IEEE International Conference on
Conference_Location :
Cairo
ISSN :
1522-4880
Print_ISBN :
978-1-4244-5653-6
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2009.5413713
Filename :
5413713
Link To Document :
بازگشت