DocumentCode :
3481633
Title :
A granular approach for the analysis of monophonic audio signals
Author :
Donagh, Lorcan M. ; Bimbot, Frédéric ; Gribonval, Rémi
Author_Institution :
IRISA (CNRS & INRIA)/METISS, Rennes, France
Volume :
6
fYear :
2003
fDate :
6-10 April 2003
Abstract :
The paper describes a method for analyzing audio signals with an adaptive "parametric dictionary". We use sliding frames to extract elementary signals or grains from the analysis signal. We search for similarities amongst the collected grains to form classes, which we then use to derive a signal model for each class. These signal models or prototypes, are used to decompose the audio signal and compute analysis parameters for each grain. As a preliminary evaluation, we tested the method with real-life, monophonic and monaural recordings and obtained encouraging results.
Keywords :
adaptive signal processing; audio signal processing; signal classification; adaptive parametric dictionary; granular approach; monaural recordings; monophonic audio signals; signal classification; sliding frames; Audio recording; Chirp; Dictionaries; Fourier transforms; Frequency domain analysis; Instruments; Signal analysis; Signal synthesis; Testing; Wavelet analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-7663-3
Type :
conf
DOI :
10.1109/ICASSP.2003.1201720
Filename :
1201720
Link To Document :
بازگشت