• DocumentCode
    34825
  • Title

    Bounds on Entanglement-Assisted Source-Channel Coding via the Lovász \\vartheta Number and Its Variants

  • Author

    Cubitt, Toby ; Mancinska, Laura ; Roberson, David E. ; Severini, Simone ; Stahlke, Dan ; Winter, Andreas

  • Author_Institution
    Dept. de Analisis Matematico, Univ. Complutense de Madrid, Madrid, Spain
  • Volume
    60
  • Issue
    11
  • fYear
    2014
  • fDate
    Nov. 2014
  • Firstpage
    7330
  • Lastpage
    7344
  • Abstract
    We study zero-error entanglement-assisted source-channel coding (communication in the presence of side information). Adapting a technique of Beigi, we show that such coding requires existence of a set of vectors satisfying orthogonality conditions related to suitably defined graphs G and H. Such vectors exist if and only if ϑ(G̅) ≤ ϑ(H̅), where ϑ represents the Lovász number. We also obtain similar inequalities for the related Schrijver ϑ- and Szegedy ϑ+ numbers. These inequalities reproduce several known bounds and also lead to new results. We provide a lower bound on the entanglement-assisted cost rate. We show that the entanglement-assisted independence number is bounded by the Schrijver number: α*(G) ≤ ϑ-(G). Therefore, we are able to disprove the conjecture that the one-shot entanglement-assisted zero-error capacity is equal to the integer part of the Lovász number. Beigi introduced a quantity β as an upper bound on α* and posed the question of whether β(G) = ⌊ϑ(G)⌋. We answer this in the affirmative and show that a related quantity is equal to ⌊ϑ(G)⌋. We show that a quantity χvect(G) recently introduced in the context of Tsirelson´s problem is equal to ⌊ϑ+(G)⌋. In an appendix, we investigate multiplicativity properties of Schrijver´s and Szegedy´s numbers, as well as projective rank.
  • Keywords
    combined source-channel coding; Lovasz number; Schrijver number; Szegedy number; Tsirelson problem; entanglement-assisted cost rate; entanglement-assisted independence number; multiplicativity properties; one-shot entanglement-assisted zero-error capacity; orthogonality condition; zero-error entanglement-assisted source-channel coding; Channel coding; Educational institutions; Electronic mail; Noise measurement; Quantum entanglement; Vectors; Graph theory; linear programming; quantum entanglement; quantum information; zero-error information theory;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2014.2349502
  • Filename
    6880319